Home
Class 12
MATHS
Prove that: |(sinalpha, cosalpha, 1),(si...

Prove that: `|(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Using properties of determinants. Prove that |(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta)|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta))|=0

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma , then which of the following is/are true:- (a) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-3/2 (b) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-1/2 (c) sumcos2alpha+2cos(alpha+beta)+2cos(beta+gamma)+2cos(gamma+alpha)=0 (d) sumsin2alpha+2sin(alpha+beta)+2sin(beta+gamma)+2sin(gamma+alpha)=0

Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0 cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0 sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled "" d. acute angled

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|