Home
Class 12
MATHS
If I(n)=int(0)^(pi)(1-sin2nx)/(1-cos2x)d...

If `I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx` then `I_(1),I_(2),I_(3),"….."` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

I=int(sin^2x)/(1+cos x)dx

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If rArrI_(n)= int_(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I_(2)-I_(1),I_(3)-I_(2),I_(4)-I_(3) are in

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

If I(m) = int_0^pi ln(1-2m cos x + m^2)dx , then I(1)=

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then