Home
Class 12
MATHS
The value of theta lying between 0 and p...

The value of theta lying between 0 and `pi/2` and satisfying the equation `|(1+cos^2theta, sin^2theta, 4sin4theta),(cos^2theta, 1+sin^2theta, 4sin4theta)(cos^2theta, sin^2theta, 1+4sin4theta)|=0` is (are)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of theta lying between 0 and pi/2 and satisfying |[1+sin^2theta,cos^2theta,4sin4theta],[sin^2theta,1+cos^2theta,4sin4theta],[sin^2theta,cos^2theta,1+4sin4theta]|=0

The value of theta lying between theta=0 and theta=pi/2 and satisfying the equation |1+sin^2theta cos^2theta4sin4thetasin^2theta1+cos^2theta4sin4thetasin^2thetacos^2theta1+4sin4theta|=0a r e (7pi)/(24) (b) (5pi)/(24) (c) (11pi)/(24) (d) pi/(24)

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

The value of Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)| equal to

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

The number of values of theta in [0, 2pi] that satisfies the equation sin^(2)theta - cos theta = (1)/(4)

If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4theta+8cos^2theta=4

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta