Home
Class 12
MATHS
Without expanding a determinant at any s...

Without expanding a determinant at any stage, show that `abs((x^2+x ,x+1 , x-2),(2x^2+3x-1 ,3x , 3x-3) , (x^2+2x+3, 2x-1 ,2x-1))=xA+B` ,where `A` and `B` are determinant of order 3 not involving `xdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B then find A and B

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

By using properties of determinants. Show that: |[1,x,x^2],[x^2, 1,x],[x,x^2, 1]|=(1-x^3)^2

Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]| =0.

If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))| , using properties of determinant, find f(2x) - f(x).

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

Simplify: (x^3-2x^2+3x-4)(x-1)-\ (2x-3)(x^2-x+1)

If int _(0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin (b), where a and b are positive integers. Find the value of (a+b).

If A, B, C, D are the sum of the square of the roots of 2x^(2) + x- 3=0, x^(2)-x+2= 0, 3x^(2) - 2x +1=0, x^(2)- x+1=0 then the ascending order of A, B, C, D is