Home
Class 12
MATHS
The value of the determinant |{:(ka,,k^...

The value of the determinant `|{:(ka,,k^(2)+a^(2),,1),(kb,,k^(2)+b^(2),,1),(kc,,k^(2)+c^(2),,1):}|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |k a k^2+a^2 1k b k^2+b^2 1k c k^2+c^2 1| is k(a+b)(b+c)(c+a) k a b c(a^2+b^(f2)+c^2) k(a-b)(b-c)(c-a) k(a+b-c)(b+c-a)(c+a-b)

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

The value of the expression log_(2)(1+(1)/(2) sum_(k=1)^(11) ""^(12)C_(k)) :

If (k+(1)/(k))^(2)=16 , then k^(2)+(1)/(k^(2))=

Find the values of k, if the points A (k+1,2k) ,B (3k,2k+3) and C (5k-1,5k) are collinear.

If the value of K, is the points (k, 2-2k), (1-k, 2k) and (-4-k, 6-2 k) are collinear.

For what value of k are the points (k ,2-2k),(-k+1,2k)a n d(-4-k ,6-2k) collinear?

For what value of k are the points (k ,2-2k) (k+1,2k) and (-4-k ,6-2k) are collinear?

For what value of k are the points (k ,2-2k)(-k+1,2k)a n d(-4-k ,6-2k) are collinear?