Home
Class 12
MATHS
If |[x^n,x^(n+2),x^(n+4)],[y^n,y^(n+2),y...

If `|[x^n,x^(n+2),x^(n+4)],[y^n,y^(n+2),y^(n+4)],[z^n, z^(n+2),z^(n+4)]|=(1/(y^2)-1/(x^2))(1/(z^2)-1/(y^2))(1/(x^2)-1/(z^2))` then ` n` is __________.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |[x^n, x^(n+2), x^(n+3)], [y^n, y^(n+2), y^(n+3)], [z^n, z^(n+2), z^(n+3)]|=(x-y)(y-z)(z-x)(1/x+1/y+1/z), then n equals a. 1 b. -1 c. 2 d. -2

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If y=a x^(n+1)+b x^(-n) , then x^2(d^2y)/(dx^2)= n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=x^(n-1)lnx then x^2y_2+(3-2n)x y_1 is equal to (a) -(n-1)^2y (b) (n-1)^2y (c) -n^2y (d) n^2y