Home
Class 12
MATHS
If f(x)=tanx and A,B,C are the anlges of...

If `f(x)=tanx and A,B,C` are the anlges of `/_\ABC, then |(f(A), f(pi/4) f(pi/4)), (f(pi/4), f(B) f(pi/4)), (f(pi/4), f(pi/4) f(C))|`= (A) 0 (B) -2 (C) 2 (D) 1

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=0 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1

If f(x)=|cosx| , find f^(prime)(pi/4) and f^(prime)((3pi)/4) .

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1/sqrt(2)

f(x)=min(sinx, cosx),x in (-pi,pi) the values of x where f(x) is non differentiable, is the set A . Then A is subset of (A) {(-3pi)/4, (-pi)/4, (3pi)/4} (B) {(-pi)/4, pi/4, (3pi)/3} (C) {(-3pi)/4, (3pi)/4} (D) {(-3pi)/4, (-pi)/4, pi/4, (3pi)/4}

Let f:(-pi/2, pi/2)->R , f(x) ={lim_(n->oo) ((tanx)^(2n)+x^2)/(sin^2x+(tanx)^(2n)) x in 0 , n in N ; 1 if x=0 which of the following holds good? (a) f(-(pi^(-))/4)=f((pi^(+))/4) (b) f(-(pi^(-))/4)=f(-(pi^(+))/4) (c) f((pi^(-))/4)=f((pi^(+))/4) (d) f(0^(+))=f(0)=f(0^(-))

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt , then f(x+pi) is (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

Let f(x)=tan^(-1)(1/2 tan2x)+tan^(-1)(cotx)+tan^(-1)(cot^3x) then (1) f((3 pi)/8)=pi (2) f(pi/8)=0 (3) f(pi/8) =pi (4) f((3pi)/8)=0

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is