Home
Class 12
MATHS
Let f(x) = ax^(2) + bx + c, a, b, c, in ...

Let `f(x) = ax^(2) + bx + c, a, b, c, in R` and equation `f(x) - x = 0` has imaginary roots `alpha, beta`. If r, s be the roots of `f(f(x)) - x = 0`, then `|(2,alpha,delta),(beta,0,alpha),(gamma,beta,1)|` is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If (x + 2)(x + 3b) = c has roots alpha,beta , then the roots of (x + alpha)(x+beta) + c = 0 are

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha, beta are the roots of x^(2) + bx + c = 0 and, alpha +h, beta+h are the roots of x^(2) + qx +r = 0 then h =

Let f(x)=ax^(2)+bx+c , g(x)=ax^(2)+qx+r , where a , b , c , q , r in R and a lt 0 . If alpha , beta are the roots of f(x)=0 and alpha+delta , beta+delta are the roots of g(x)=0 , then

If alpha. beta are the roots of x^2 +bx+c=0 and alpha + h, beta + h are the roots of x^2 + qx +r=0 then 2h=

Let alpha,beta,gamma be the roots of x^3+ax^2+bx+c=0 then find sum alpha^2beta+sumalphabeta^2 .