Home
Class 12
MATHS
The determinant Delta=|(a^2(a+b),a b,a c...

The determinant `Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))|`is divisible by

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

Without expanding evaluate the determinant "Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)| .

If A, B, C are the angles of a triangle, then the determinant Delta = |(sin 2 A,sin C,sin B),(sin C,sin 2B,sin A),(sin B,sin A,sin 2 C)| is equal to

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)

which of the following is // are true for Delta= |{:(a^(2),,1,,a+c),(0,,b^(2)+1,,b+c),(0,,b+c,,c^(2)+1):}| ?

If a,b,c are unequal then what is the condition that the value of the following determinant is zero Delta =|(a,a^2,a^3+1),(b,b^2,b^3+1),(c,c^2,c^3+1)|

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .

Using the property of determinants and without expanding, prove that: |[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2