Home
Class 12
MATHS
If f(x) and g(x) are functions such that...

If `f(x) and g(x)` are functions such that `f(x + y) = f(x) g(y) + g(x) f(y),` then in `|(f(alpha),g(alpha),f(alpha+theta)),(f(beta),g(beta),f(beta+theta)), (f(lambda),g(lambda),f(lambda+theta))|` is independent of

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

Let f(x) be a function such that f(x), f'(x) and f''(x) are in G.P., then function f(x) is

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f (x) is a function such that f (x) + f''(x) =0 and g (x)= (f (x))^(2) +(f' (x))^(2) and g (3) =8, then g (8)=

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

Let f(x)=x^2 and g(x) = 2x + 1 be two real functions. find (f +g)(x) , (f-g)(x) , (fg)(x) , (f/g)(x) .

Let f and g be two differentiable functions on R such that f'(x)>0 and g′(x) g(f(x-1)) (b) f(g(x))>f(g(x+1)) (c) g(f(x+1))

f:R to R is a function defined by f(x)= 10x -7, if g=f^(-1) then g(x)=