Home
Class 12
MATHS
The value of the determinant |(sintheta,...

The value of the determinant `|(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|`

Promotional Banner

Similar Questions

Explore conceptually related problems

The volume of the parallelepiped whose coterminous edges are represented by the vectors 2vecb xx vecc, 3vecc xx veca and 4veca xx vecb where veca=(1+sintheta)hati+costhetahatj+sin2thetahatk , vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk , vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk is 18 cubic units, then the values of theta , in the interval (0,pi/2) , is/are

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

The volume of the parallelepiped whose coterminous edges are represented by the vectors 2vecb xx vecc, 3vecc xx veca and 4veca xx vecb where vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk , vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk is 18 cubic units, then the values of theta , in the interval (0,pi/2) , is/are

For all theta, sin theta + sin(theta + pi)+sin (2pi + theta)=

Prove that tan(theta+(pi)/(6))+cot(theta-(pi)/(6))=(1)/(sin2theta-sin.(pi)/(3))

Solve: sin2theta=sin((2pi)/(3)-theta)

Prove that 4sinthetasin(pi/3+theta)sin((2pi)/3+theta)=sin3theta

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0):}|

If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a sinb theta . Find the value of |(b)/(a)| .