Home
Class 12
MATHS
If ^nP(r-1):^nPr: ^nP(r+1)=a,b:c, prove ...

If `^nP_(r-1):^nPr: ^nP_(r+1)=a,b:c,` prove that `b^2=a(b+c)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=x y^(p-1),\ b=x y^(q-1) and c=x y^(r-1) , prove that a^(q-r)b^(r-p)\ c^(p-q)=1

Prove that nP_n=2 ^nP_(n-2)

If f(a,b) =(f(b)-f(a))/(b-a) and f(a,b,c)=(f(b,c)-f(a,b))/(c-a) prove that f(a,b,c)=|{:(f(a),f(b),f(c)),(1,1,1),(a,b,c):}|-:|{:(1,1,1),(a,b,c),(a^(2),b^(2),c^(2)):}| .

If a ,b ,c in R+ form an A.P., then prove that a+1//(b c),b+1//(1//a c),c+1//(a b) are also in A.P.

If in Delta ABC, (a -b) (s-c) = (b -c) (s-a) , prove that r_(1), r_(2), r_(3) are in A.P.

If sum_(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the least value of (a + b + c) is pqrs then

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If r_(1), r_(2) ,r_(3) are the ex-radii of DeltaABC, then prove that (bc)/(r_(1))+(ca)/(r _(2))+(ab)/(r _(3))=2R [((a)/(b)+(b)/a)+((b)/(c)+(c)/(b))+((c)/(a)+ (a)/(c))-3]