Home
Class 12
MATHS
If 1/(1!xx11!)+1/(3!xx9!)+1/(5!xx7!)=2^n...

If `1/(1!xx11!)+1/(3!xx9!)+1/(5!xx7!)=2^n/n! Then m+ n=

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/(1!11!)+1/(3!9!)+1/(5!7!)=(2^n)/(m!) then the value of m + n is

If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/(9xx11)+ is pi//8 b. pi//6 c. pi//4 d. pi//36

Find the sum to n terms of the series 1//(1xx2)+1//(2xx3)+1//(3xx4)++1//n(n+1)dot

(1/3xx1/5)/(1/3xx1/5+1/3xx1/6+1/3xx1/7)

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

Find the sum of infinite series (1)/(1xx3xx5)+(1)/(3xx5xx7)+(1)/(5xx7xx9)+….

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n

Find the sum to n terms of the series : 1/(1xx2)+1/(2xx3)+1/(3xx4)+dotdotdot