Home
Class 12
MATHS
sum(k=1)^m(k^2+1)k=2009xx2010!, then m= ...

`sum_(k=1)^m(k^2+1)k=2009xx2010!, then m=` (A) 2009 (B) 2010 (C) 2011 (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=0)^(5)(-1)^(k)2k

If D_k=|[1,n,n],[2k,n^2+n+2,n^2+n],[2k-1,n^2,n^2+n+2]| and sum_(k=1)^n D_k=48 ,then n equals (a) 4 (b) 6 (c) 8 (d) none of these

Lt_(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0 , is equal to (A) k/e (B) e/k (C) 1/(ke) (D) none of these

Thenumber of subsets o the set {1,2,…………….,m} havig least element r and greatest element k, 1lerltklem is (A) 2^(m-1) (B) 2^(k-r-1) (C) 2^(k-1) (D) none of these

Coefficient of x^(2009) in (1+x+x^(2)+x^(3)+x^(4))^(1001) (1-x)^(1002) is (a) 0 (b) 4."^(1001)C_(501) (c) -2009 (d) none of these

Lt_(nrarroo) sum_(r=1)^n (2r)^k/n^(k+1),k!=-1 , is equal to (A) 2^k/(k-1) (B) 2^k/k (C) 1/(k+1) (D) 2^k/(k+1)

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (b) 1/5 (c) 5 (d) none of these

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (b) 1/5 (c) 5 (d) none of these

If tan 69^(@) + tan 66^(@) - tan 69^(@)tan 66^(@) = 2k then k = (a) -(1)/(2) (b) (1)/(2) (c) -1 (d)None of these

If in a triangle A B C ,(1+cosA)/a+(1+cosB)/b+(1+cosC)/c =(k^2(1+cosA)(1+cosB)(1+cosC)/(a b c) , then k is equal to (a) 1/(2sqrt(2)R) (b) 2R (c) 1/R (d) none of these