Home
Class 12
MATHS
If {x} denotes the fractional part of x,...

If {x} denotes the fractional part of x, then `{(3^(2n))/8},n in N ,` is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of 'x' , then 82{3^1001/82}=

The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where {dot} denotes the fractional part, is (a) [0,pi] (b) (2n+1)pi/2, n in Z (c) (0,pi) (d) none of these

The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where {dot} denotes the fractional part, is (a) [0,pi] (b) (2n+1)pi/2, n in Z (0,pi) (d) none of these

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

Let I_n=int_(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx , where {*} denotet the fractional part of x. Find I_1.

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

If f(n)=(int_0^n[x]dx)/(int_0^n{x}dx) (where,[*] and {*} denotes greatest integer and fractional part of x and n in N). Then, the value of f(4) is...

Evaluate: (int0n[x]dx)/(int0n{x}dx)(w h e r e[x]a n d{x} are integral and fractional parts of xa n dn in N)dot

If [x] denotes the integral part of [x] , show that: int_0^((2n-1)pi) [sinx]dx=(1-n)pi,n in N

If [x] denotes the integral part of x and m= [|x|/(1+x^2)],n= integral values of 1/(2-sin3x) then (A) m!=n (B) mgtn (C) m+n=0 (D) n^m=0