Home
Class 12
MATHS
Find the value of 1/(81^n)-(10)/(81^n)C1...

Find the value of `1/(81^n)-(10)/(81^n)C_1+(10^2)/(81^n)C_2-(10^3)/(81^n)C_3++(10^(2n))/(81^n)` .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 1/(81^n)-(10)/(81^n)^(2n)C_1+(10^2)/(81^n)^(2n)C_2-(10^3)/(81^n)^(2n)C_3++(10^(2n))/(81^n) .

Find the value of 1/(81^n)-((10)/(81^n))^(2n)C_1+((10^2)/(81^n))^(2n)C_2-((10^3)/(81^n))^(2n)C_3++(10^(2n))/(81^n) .

Find the value of n: (i) .^(n)C_(10)=^(n)C_(16) (ii) .^(15)C_(n) =^(15)C_(n+3) (iii) .^(10)C_(n) =^(10)C_(n+2) (iv) .^(25)C_(3n) =.^(25)C_(n+1) (v) .^(n)C_(r) =.^(n)C_(r-2)

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

Each question has four choices a, b, c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. Both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT1. Both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. STATEMENT 1 is TRUE and STATEMENT 2 is FALSE. STATEMENT 1 is FALSE and STATEMENT 2 is TRUE. Statement 1: The value of (^(10)^C_0)+(^(10)C_0+(10)C_1)+(^(10)C_0+(10)C_1+(10)C_2)++(^(10)C_0+(10)C_1+(10)C_2++(10)C_9) is 10 2^9 . Statement 2: ^n C_1+2^n C_2+3^n C_3+ n^n C_n=n2^(n-1) .

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Evaluate Lt_(n to oo)[(1)/(1+n)+(1)/(2+n)+(1)/(3+n)+"...."+(1)/(10n)]

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Find the following sums : (i) .^(n)C_(0)-.^(n)C_(2)+.^(n)C_(4)-.^(n)C_(6)+"....." (ii) .^(n)C_(1)-.^(n)C_(3)+.^(n)C_(5)-.^(n)C_(7)+"...." (iii) .^(n)C_(0)+.^(n)C_(4)+.^(n)C_(8)+.^(n)C_(12)+"....." (iv) .^(n)C_(2) + .^(n)C_(6) + .^(n)C_(10)+.^(n)C_(14)+"......" (v) .^(n)C_(1) + .^(n)C_(5)+.^(n)C_(9)+.^(n)C_(13)+"...." (vi) .^(n)C_(3) + .^(n)C_(7) + .^(n)C_(11) + .^(n)C_(15) + "....."