Home
Class 12
MATHS
If (1-x^(3))^(n)=underset(r=0)overset(n)...

If `(1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r)`, then the value of `a_(r)`, where `n in N` is

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda .

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

let underset(r=0)overset(2010)(sum)a_(r)x^(r)=(1+x+x^(2)+x^(3)+x^(4)+x^(5))^(402) and underset(r=0)overset(2010)(sum)a_(r)=a, then the value of ((underset(r=0)overset(2010)(sum)r.a_(r))/(underset(r=0)overset(2010)(sum)a_(r))) is equal to____.

Statement-1: If underset(r=1)overset(n)(sum)r^(3)((.^(n)C_(r))/(.^(n)C_(r-1)))^(2)=196 , then the sum of the coeficients of powerr of xin the expansion of the polynomial (x-3x^(2)+x^(3))^(n) is -1. Statement-2: (.^(n)C_(r))/(.^(n)C_(r-1))=(n-r+1)/(r) AA n in N and r in W .

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .