Home
Class 12
MATHS
If (nC0)/(2^n)+2.(nC1)/2^n+3.(nC2)/2^n+....

If `(nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16` then the value of 'n' is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to a. int_0^1x^(n-1)(1-x)^n dx b. int_1^2x^n(x-1)^(n-1)dx c. int_1^2x^(n-1)(1+x)^n dx d. int_0^1(1-x)^(n-1)dx

If ^nC_4, ^nC_5, ^nC_6 are in A.P. then the value of n is

If .^(n+1)C_(r+1.): ^nC_r: ^(n-1)C_(r-1)=11:6:3 find the values of n and r.

If ^nC_r=84 ,^n C_(r-1)=36 ,a n d^n C_(r+1)=126 , then find the value of ndot

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

If .^nC_12=^nC_8 , find .^nC_17 and ^22C_n

If .^nC_(n-4)=15 , find .^nC_6

If C_r stands for nC_r , then the sum of the series (2(n/2)!(n/2)!)/(n !)[C_0^2-2C_1^2+3C_2^2-........+(-1)^n(n+1)C_n^2] ,where n is an even positive integer, is

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

sum_(n=1)^(oo) (""^(n)C_0+""^nC_1+.....+ ""^(n)C_n)/(""^nP_n) =