Home
Class 12
MATHS
If (1+x)^n=C0+C1x+C2x^2+……..+Cnx^n, show...

If `(1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n`, show that `C_0/1.2-C_1/2.3+C_2/3.4-C_3/4.5+………..+(-1)^n C_n/((n+1)(n+2))=1/(n+2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n , show that C_1/2+C_3/4+C_5/6+………..= (2^n-1)/(n+1)

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n , show that 3.C_0+3^2.C_1/2+3^3.C_2/2+.+3^(n+1). C_n/(n+1)=(4^(n+1)-1)/(n+1)

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_0 - C_2 + C_4 - C_6 + …….

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_1 - C_3 + C_5 + ……

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_n x^n , then C_0C_2+C_1C_3+C_2C_4+...+C_(n-2)C_n= a. ((2n)!)/((n !)^2) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((n-2)!(n+2)!) d. none of these

If (1+x)^n=C_0+C_1x+C_2x^2=……..+C_nx^n show that sum_(r=0)^(n-3) C_r C_(r+3) = ((2n)!)/((n+3)!(n-3)!)

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n in N prove that (a) 3 C_0- 8C_1+13C_2-18C_3+...."upto" (n+1) term=0 if n ge 2 (b ) 2C_0+2^2(C_1)/(2)+2^3(C_2)/(3)+2^4C_(3)/4+....+2^(n+1)(C_n)/(n+1)=(3^n+1-1)/(n+1) ( c) C_0^2+(C_1^2)/2+C_2^2/3+....+C_n^2/(n+1)=((2n+1)!)/(((n+1)!)^2)

If (1 + x)^n = C_0+C_1x+C_2x^2 + ... + C_nx^n ,then for n odd, C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_nx^n then the value of (C_0)^2+(C_1)^2/2+(C_2)^2/3+...+(C_n)^2/(n+1) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .