Home
Class 12
MATHS
If (1+x)^n=C0+C1x+C2x^2=……..+Cnx^n show ...

If `(1+x)^n=C_0+C_1x+C_2x^2=……..+C_nx^n` show that `sum_(r=0)^(n-3) C_r C_(r+3) = ((2n)!)/((n+3)!(n-3)!)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n , show that C_1/2+C_3/4+C_5/6+………..= (2^n-1)/(n+1)

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + c_(3) x^(3) + …+ C_(n) x^(n) , show that sum_(r=0)^(n) (C_(r) 3^(r+4))/((r+1)(r+2)(r+3)(r+4)) = (1)/((n+1)(n+2)(n+3)(n+4))(4^(n+4) -sum_(t=0)^(3) ""^(n+4)C_(t)) .

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n , show that 3.C_0+3^2.C_1/2+3^3.C_2/2+.+3^(n+1). C_n/(n+1)=(4^(n+1)-1)/(n+1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n , show that C_0/1.2-C_1/2.3+C_2/3.4-C_3/4.5+………..+(-1)^n C_n/((n+1)(n+2))=1/(n+2)

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .