Home
Class 12
MATHS
If n is a positive integer, prove that ...

If n is a positive integer, prove that
`underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

Prove that : (""^(n)C_(r+1))/(""^(n)C_(r))=(n-r)/(r+1)

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

Prove that sum_(r = 1)^n r^3 ((n_C_r)/(C_(r - 1)))^2 = (n (n + 1)^2 (n+2))/(12)

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .