Home
Class 12
MATHS
Statement-1: If underset(r=1)overset(n)(...

Statement-1: If `underset(r=1)overset(n)(sum)r^(3)((.^(n)C_(r))/(.^(n)C_(r-1)))^(2)=196`, then the sum of the coeficients of powerr of xin the expansion of the polynomial `(x-3x^(2)+x^(3))^(n)` is -1.
Statement-2: `(.^(n)C_(r))/(.^(n)C_(r-1))=(n-r+1)/(r) AA n in N and r in W`.

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

If n is a positive integer, prove that underset(r=1)overset(n)sumr^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to