Home
Class 12
MATHS
Let an=1000^n/(n!) for n in N, then an ...

Let `a_n=1000^n/(n!)` for `n in N`, then `a_n` is greatest, when value of n is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(n)=(827^(n))/(n!) for n in N , then a_(n) is greatest when

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

If a_n=n/((n+1)!) then find sum_(n=1)^50 a_n

If in an AP a=15, d=-3 and a_n=0 . Then find the value of n.

If a_n = n (n!) , then sum_(r=1)^100 a_r is equal to

If a_n=sin((npi)/6) then the value of sum a_n^2

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n

The first term of a sequence of numbers is a_1=5 . Succeeding terms are defined by relation a_n=a_(n-1) + (n + 1) 2^n AA n>=2 , then the value of a_50 is

Let {a_n}(ngeq1) be a sequence such that a_1=1,a n d3a_(n+1)-3a_n=1 for all ngeq1. Then find the value of a_(2002.)