Home
Class 12
MATHS
If in the expansion of (a+b)^n,nepsilonN...

If in the expansion of `(a+b)^n,n``epsilonN` sum of odd and even terms be `alpha and beta` respectively, then (A) `(a^2-b^2)^n=alpha^2-beta^2 (B) ``(a^2-b^2)^n=(alpha-beta)^n` (C) `(a+b)^n-(a-b)^n=4alphabeta (D) ``(a+b)^(2n)-(a-b)^(2n)=4alphabeta`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are the sums of odd and even terms respectively in the expansion of (x+a)^n then (x+a)^(2n)-(x-a)^(2n)=

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If A and B are the coefficients of x^n in the expansion (1 + x)^(2n) and (1 + x)^(2n-1) respectively, then A/B is

If in the expansion of (a-2b)^n , the sum of 5th and 6th terms is 0, then the values of a/b a. (n-4)/5 b. (2(n-4))/5 c. 5/(n-4) d. 5/(2(n-4))

Let alpha and beta be the roots of x^2-6x-2=0 with alpha>beta if a_n=alpha^n-beta^n for n>=1 then the value of (a_10 - 2a_8)/(2a_9)

If in the expansion of (a-2b)^(n) , the sum of 5^(th) and 6^(th) terms is 0, then the values of a/b is (a) (n-4)/(5) (b) (2(n-4))/(5) (c) (5)/(n-4) (d) (5)/(2(n-4))

If alphaa n dbeta are the solutions of acostheta+bsintheta=c , then show that "cos"(alpha+beta)=(a^2-b^2)/(a^2+b^2) (ii) cos(alpha-beta)=(2c^2-(a^2+b^2))/(a^2+b^2)

Let alpha and beta be the roots x^2-6x-2=0, with alpha > beta If a_n=alpha^n-beta^n for or n >= 1 then the value of (a_10-2a_8)/(2a_9) is (a) 1 (b) 2 (c) 3 (d) 4

If A be the sum of odd terms and B be the sum of even terms in the expansion of (x+a)^(n) , prove that A^(2) -B^(2) = (x^(2) - a^(2)) ^(n)

If a\ a n d\ b are the coefficients of x^n in the expansions of (1+x)^(2n) and (1+x)^(2n-1) respectively, find a/b .