Home
Class 12
MATHS
For any positive integer (m,n) (with nge...

For any positive integer (m,n) (with `ngeqm`), Let `((n),(m)) =.^nC_m` Prove that `((n),(m)) + 2((n-1),(m))+3((n-2),(m))+....+(n-m+1)((m),(m))`=(n+2,m+2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

Prove that (mn)! Is divisible by (n!)^(m) " and" (m!)^(n) .

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

If x,y are positive real numbers and m, n are positive integers, then prove that (x^(n) y^(m))/((1 + x^(2n))(1 + y^(2m))) le (1)/(4)

Prove that (mn)! Is divisible by (n!)^(m) " and" (m!)^(n)

If a ,\ m ,\ n are positive integers, then {root(m)root (n)a}^(m n) is equal to (a) a^(m n) (b) a (c) a^(m/n) (d) 1

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

If x and y are positive real numbers and m, n are any positive integers, then prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt 1/4