Home
Class 12
MATHS
If ana(n-1)a-(n-2),.,a3,a2,a-1 be a digi...

If `a_na_(n-1)a-(n-2),.,a_3,a_2,a-1` be a digit having `a_1,a_2,a_3,…..a_n` t unti, thens hundred places respectively. Then `a_n a_(n-1) a_(n-2)….a_3a_2a_1= a_nxx1+a_2xx10^2+a_3xx10^3+…..+a_n10^(n-1)` On the basis of above information answer the following question For a sequence `{t_n},t_1=49, t_2= 4489, t_3=444889` in which every number is made by inserting 48 in the middle of the previous number. The for all `nepsilonN, t_n` is (A) square of an odd integer (B) divisible by 3 (C) divisible by 9 (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_na_(n-1)a-(n-2),.,a_3,a_2,a-1 be a digit having a_1,a_2,a_3,…..a_n unit, tens hundreds places respectively. Then a_n a_(n-1) a_(n-2)….a_3a_2a_1= a_nxx1+a_2xx10^2+a_3xx10^3+…..+a_n10^(n-1) On the basis of above information answer the following question If alpha= 888.....8 (a nunmber of n digits), beta=666.........6 (a number of n digits) and gamma=444.......4 (a number 2n digits) then gamma-alpha= (A) beta (B) beta^2 (C) - beta (D) -beta^2

a_1,a_2,a_3 ,…., a_n from an A.P. Then the sum sum_(i=1)^10 (a_i a_(i+1)a_(i+2))/(a_i + a_(i+2)) where a_1=1 and a_2=2 is :

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

Write the first five terms in each of the following sequence: a_1=a_2=2,\ a_n=a_(n-1)-1,\ n >1 .

Let a_1,a_2,a_3…………., a_n be positive numbers in G.P. For each n let A_n, G_n, H_n be respectively the arithmetic mean geometric mean and harmonic mean of a_1,a_2,……..,a_n On the basis of above information answer the following question: A_k,G_k,H_k are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Write the first five terms in each of the following sequence: a_1=1=\ a_2,\ a_n=a_(n-1)+a_(n-2),\ n >2

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_1))

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is