Home
Class 12
MATHS
If In= int0^pi (1-cos2nx)/(1-cos2x)dx or...

If `I_n= int_0^pi (1-cos2nx)/(1-cos2x)dx or int_0^pi (sin^2nx)/(sin^2x) dx,` show that `I_1, I_2, I_3………….` are inA.P.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then

int_0^(pi/2) sin^3x/(sin^3x+cos^3x)dx

I=int(sin^2x)/(1+cos x)dx

If I_1=int_0^pixf(sin^3x+cos^2x)dxand I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx , then relate I_1 and I_2

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

Q. int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

If A=int_0^pi cosx/(x+2)^2 \ dx , then int_0^(pi//2) (sin 2x)/(x+1) \ dx is equal to

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2