Home
Class 12
MATHS
If the arthmetic mean of (b-c)^2, (c-a)^...

If the arthmetic mean of `(b-c)^2, (c-a)^2 and (a-b)^2` is the same as that of `(b+c-2a)^2, (c+a-2b)^2 and (a+b-2c)^2 ` show that `a=b=c`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (a+b+c)^2+\ (a-b+c)^2+\ (a+b-c)^2

If a, b, c are in A.P, then show that: \ b c-a^2,\ c a-b^2,\ a b-c^2 are in A.P.

If a,b,c,d be in G.P. show that (b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2 .

If (b+c-2a)/a , (c+a-2b)/b , (a+b-2c)/c are in A.P. , then a,b,c are in :

If a, b, c are distinct real numbers, show that the points (a, a^2), (b, b^2) and (c, c^2) are not collinear.

Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)^3

If a b+b c+c a=0, then solve a(b-2c)x^2+b(c-2a)x+c(a-2b)=0.

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A