Home
Class 12
MATHS
If m=sum(r=0)^oo a^r n = sum(r=0)^oo b^r...

If `m=sum_(r=0)^oo a^r n = sum_(r=0)^oo b^r, where 0,alt1, 0,blt1` then the quandratic equation whose roots are a and b is (A) `mnx^2+(m+n-2mn)x=mn-m-n+1=0` (B) `mnx^2+(2mn-m-n)x=mn-m-n+1=0` (C) `mnx^2+(2mn+m+n)x=mn+m+n+1=0` (D) `mnx^2+(2mn+m+n)x=mn+m+n+1=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

The angle between the lines whose directionn cosines are given by 2l-m+2n=0, lm+mn+nl=0 is

Find the condition that the ratio between the roots of the equation ax^(2)+bx+c=0 may be m:n.

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sin A + cos A = m and sin^3 A + cos^3A=n , then (1) m^3-3m + n = 0 (2) n^3-3n + 2m=0 (3) m^3-3m + 2n = 0 (4) m3 + 3m + 2n = 0

Find the angle between the lines whose direction-cosines are give l + 2m + 3n = 0 and 3lm - 4ln + mn = 0

If sum_(r=1)^n t_r= (n(n+1)(n+2))/3 then sum _(r=1)^oo 1/t_r= (A) -1 (B) 1 (C) 0 (D) none of these

If the roots of the equation ax^(2)+bx+c=0 are in the ratio m:n then

If (m + n)/(m + 3n) = (2)/(3) , find : (2n^(2))/(3m^(2) + mn) .

Find the product of : 1.6 mn^(2) and 0.2 m^(2) n