Home
Class 12
MATHS
If S=tan^-1( 2.1/(2+1^2+1^4)) +tan^-1 (2...

If `S=tan^-1( 2.1/(2+1^2+1^4)) +tan^-1 (2.2/(2+2^2+2^4))+ tan^-1 (2.3/(2+3^2+3^4))+.` upto infinite terms, then S equals. (A) `pi` (B) `pi/2` (C) `pi/3` (D) `pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)((-1+sin1)/(cos1)) equals (A) 0 (B) 1-pi/2 (C) pi/2-1 (D) 1/2-pi/4

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

int_(-(3pi)/2)^(-pi/2) {(pi+x)^3+cos^2(x+3pi)}dx is equal to (A) pi/4-1 (B) pi^4/32 (C) pi^4/32+pi/2 (D) pi/2

1/(2^2)tan(pi/(2^2))+1/(2^3)tan(pi/(2^3))+.... to oo

Prove that: tan^-1 (1/3)+tan^-1 (2/9)+tan^-1 (4/33)+… tooo= pi/4

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

Show that 2tan^-1 (-3)=-pi/2+tan^-1(-4/3)