Home
Class 12
MATHS
Let alpha be the A.M. and beta, gamma be...

Let `alpha` be the A.M. and `beta`, `gamma` be two G.M.\'s between two positive numbes then the value of `(beta^3+gamma^3)/(alphabetagamma)` is (A) 1 (B) 2 (C) 0 (D) 3

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3)+ax+b=0 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha,beta,gamma are the angle which a half ray makes with the positive direction of the axes then sin^2alpha+sin^2beta+sin^2gamma= (A) 1 (B) 2 (C) 0 (D) -1

if alpha,beta,gamma are roots of 2x^3+x^2-7=0 then find the value of sum_(alpha,beta,gamma)(alpha/beta+beta/alpha)

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is : (a) 1 (b) 1/2 (c) 3/8 (d) 9/4

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

If alpha,beta gamma are zeroes of cubic polynomial x^(3)+5x-2 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

Single Choice Questions: 1.Let 0<=alpha, beta, gamma, delta,<=pi where beta and gamma are not complementary such that 2cos alpha+ 6 cos beta+7 cos gamma+9 cos delta=0 and 2 sin alpha- 6 sin beta+7 sin gamma-9 sin delta=0 if cos(alpha+delta)/cos(beta+gamma)=m/n when m and n are relatively prime positive numbers, then the value of (m+n) is equal to (A)11 (B)10 (C)9 (D)7

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to