Home
Class 12
MATHS
The complex numbrs x and y such that x,x...

The complex numbrs x and y such that `x,x+2y,2x+y` are n A.P. and `(y+1)^2, xy+5, (x+1)^2` are in G.P. are (A) `x=3, y=1` (B) `x=-1+2sqrt(2)i, y=1/3 (-1+2sqrt(2)i)` (C) `x=sqrt(2)+i, y=3sqrt(5)-sqrt(2)i` (D) `x=-1(1+2sqrt(2)i), y= - 1/3 (1+2sqrt(2)i)

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

Find x and y if: (3/sqrt(5) x-5)+i2 sqrt (5) y= sqrt(2)

If 3^(49)(x+i y)=(3/2+(sqrt(3))/2i)^(100) and x=k y then k is: a. -1//3 b. sqrt(3) c. -sqrt(3) d. -1/(sqrt(3))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^2-1)(dy)/(dx)=1/2y

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If x=2i, y=-4, z=3i, and i=sqrt(-1) , then sqrt(x^(3)yz)=

If y=cos^(-1){(2x-3sqrt(1-x^2))/(sqrt(13))},"f i n d"(dy)/(dx)