Home
Class 12
MATHS
A polynomial of degree 2 which takes val...

A polynomial of degree 2 which takes values `y_0,y_1,y_2` at points `x_0,x_1,x_2` respectively , is given by `p(x) = ((x-x_1)(x-x_2))/((x_0-x_1)(x_0-x_2)) y_0 + ((x-x_0)(x-x_2))/((x_1-x_0)(x_1-x_2)) y_1 + ((x-x_0)(x-x_1))/((x_2-x_0)(x_2-x_1)) y_2` A polynomial of degree 2 which takes values `y_0, y_0, y_1` at points `x_0, x_(0+t), x_1` `t!=0` is given by

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

The (x-x_1)(x-x_2)+(y-y_1)(y-y_2=0 represents a circle whose centre is

If the image of the point (x_1, y_1) with respect to the mirror ax+by+c=0 be (x_2 , y_2) then. (a) (x_2-x_1)/a = (a x_1 + b y_1+ c)/(a^(2)+b^(2)) (b) (x_2-x_1)/a = (y_2 - y_1)/b (c) (x_2-x_1)/a = -2 ((a x_1 + b y_1+ c)/(a^(2)+b^(2))) (d) None of these

A triangle has vertices A_i(x_i , y_i)fori=1,2,3 If the orthocentre of triangle is (0,0), then prove that |x_2-x_3 y_2-y_3 y_1(y_2-y_3)+x_1(x_2-x_3) x_3-x_1y_2-y_3y_2(y_3-y_1)+x_1(x_3-x_1) x_1-x_2y_2-y_3y_3(y_1-y_2)+x_1(x_1-x_2)|=0

Number of values of k for which the lines k x+y+1=0 x+k y+2=0 x+y+k=0 are concurrent is 3 (2) 2 (3) 1 (4) 0

If x lt 0 , lt 0 , x + y +(x)/4=(1)/(2) and (x+y)((x)/y)=-(1)/(2) then :

Is x (1) 1/x (2) x/y < 0

If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four points P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3), and S(x_4, y_4), then x_1+x_2+x_3+x_4=0 y_1+y_2+y_3+y_4=0 x_1x_2x_3x_4=C^4 y_1y_2y_3y_4=C^4

If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four points P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3), and S(x_4, y_4), then x_1+x_2+x_3+x_4=0 y_1+y_2+y_3+y_4=0 x_1x_2x_3x_4=C^4 y_1y_2y_3y_4=C^4

If y=(sin^(-1)x)^2 , prove that (1-x^2)y_2-x y_1-2=0 .