Home
Class 12
MATHS
Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1)...

Let `A=((1,0,0),(2,1,0),(3,2,1))`. If `u_(1)` and `u_(2)` are column matrices such that `Au_(1)=((1),(0),(0))` and `Au_(2)=((0),(1),(0))`, then `u_(1)+u_(2)` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3 be column matrices satisfying {:AU_1=[(1),(0),(0)],AU_2=[(2),(3),(6)],AU_3=[(2),(3),(1)]:} .If U is 3xx3 matrix whose columns are U_1,U_2,U_3," then "absU=

Let A_(1) = int_(0)^(x)(int_(0)^(u)f(t)dt) dt and A_(2) = int_(0)^(x)f(u).(x-u) then (A_(1))/(A_(2)) is equal to :

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisgying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). find sin^(-1) (detA) + tan^(-1) (9det C)