Home
Class 12
MATHS
If |z-4/z|=2 , then the maximum value of...

If `|z-4/z|=2` , then the maximum value of `|Z|` is equal to (1) `sqrt(3)+""1` (2) `sqrt(5)+""1` (3) 2 (4) `2""+sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If z=(1+i)/sqrt2 , then the value of z^1929 is

If |z^2-3|=3|z| , then the maximum value of |z| is a. 1 b. (3+sqrt(21))/2 c. (sqrt(21)-3)/2 d. none of these

If |z-4/2z|=2 then the least of |z| is (A) sqrt(5)-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

int(dz)/(z sqrt(z^(2)-1))

If |z-(1/z)|=1, then a. (|z|)_(m a x)=(1+sqrt(5))/2 b. (|z|)_(m in)=(sqrt(5)-1)/2 c. (|z|)_(m a x)=(sqrt(5)-2)/2 d. (|z|)_(m in)=(sqrt(5)-1)/(sqrt(2))

If z=sqrt(3)-2+i , then principal value of argument z is (where i=sqrt(-1) (1) -(5pi)/(12) (2) pi/(12) (3) (7pi)/(12) (4) (5pi)/(12)