Home
Class 12
MATHS
Let omega be a complex number such th...

Let `omega` be a complex number such that `2omega +1=z" where " z=sqrt(-3)`
`" If " |{:(1,,1,,1),(1,,-omega^(2)-1,,omega^(2)),(1,,omega^(2),,omega^(7)):}|=3k` then k is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If 1.omega, omega^2 are the roots of unity, then Delta=|(1,omega^n,omega^(2n)),(omega^n,omega^(2n),1),(omega^(2n),1,omega^n)| is equal to

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

Without expanding at any stage, prove that |{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega):}| = 0

Let Z and w be two complex number such that |zw|=1 and arg(z)−arg(w)=pi//2 then

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .