Home
Class 12
MATHS
Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1...

Let `z=(-1+sqrt(3)i)/(2)`, where `i=sqrt(-1)`, and `r, s in {1, 2, 3}`. Let `P=[((-z)^(r),z^(2s)),(z^(2s),z^(r))]` and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which `P^(2)=-I` is ______.

Promotional Banner

Similar Questions

Explore conceptually related problems

let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which P^2=-I is

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

Let z=9+ai, where i=sqrt(-1) and a be non-zero real. If Im(z^(2))=Im(z^(3)) , sum of the digits of a^(2) is

If z = 3 -2i then the value s of (Rez) (Im z)^(2) is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If p=(sqrt(q)+z)/(r^(2)+z) , what is the value of z in terms of p, q, and r ?

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)