Home
Class 12
MATHS
If the expansion in powers of x of the f...

If the expansion in powers of `x` of the function `1//[(1-a x)(1-b x)]` is a`a_0+a_1x+a_2x^2+a_3x^3+ ,t h e na_n i s` a.`(b^n-a^n)/(b-a)` b. `(a^n-b^n)/(b-a)` c. `(b^(n+1)-a^(n+1))/(b-a)` d. `(a^(n+1)-b^(n+1))/(b-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

If (1-x)^(-n)=a_0+a_1x+a_2x^2+...+a_r x^r+ ,t h e na_0+a_1+a_2+...+a_r is equal to (n(n+1)(n+2)(n+r))/(r !) ((n+1)(n+2)(n+r))/(r !) (n(n+1)(n+2)(n+r-1))/(r !) none of these

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

(lim)_(x->a)(x^n-a^n)/(x-a) is equal to a. n a^n b . n a^(n-1) c. n a d. 1

If a >0,b >0 then (lim)_(n->oo)((a-1+b^(1/n))/a)^n= b^(1//a) b. a^(1/b) c. a^b d. b^a

If A and B are the coefficients of x^n in the expansion (1 + x)^(2n) and (1 + x)^(2n-1) respectively, then A/B is

If A and B are the coefficients of x^n in the expansion (1 + x)^(2n) and (1 + x)^(2n-1) respectively, then

If A and B are the coefficients of x^n in the expansion (1 + x)^(2n) and (1 + x)^(2n-1) respectively, then

If (e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... , then the value of B_(n) - B_(n-1) is