Home
Class 12
MATHS
The distance between the points (a cosal...

The distance between the points `(a cosalpha, a sinalpha)` and `(a cosbeta, a sinbeta)` where a> 0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a\ cosalpha,\ a\ sinalpha)a n d\ (a\ cosbeta,\ asinbeta)dot

If the points A(0,0),B(cosalpha,sinalpha) , and C(cosbeta,sinbeta) are the vertices of a right- angled triangle, then

The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle then

If xcosalpha+ysinalpha=xcosbeta+ysinbeta=2a then cosalpha cosbeta=

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

Find the amplitude of sinalpha+i(1-cosalpha)

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|

Show without expanding at any stage that: | (1,cosalpha-sinalpha, cosalpha+sinalpha),(1,cosbeta-sinbeta,cosbeta+sinbeta),(1, cosgamma-singamma,cosgamma+singamma)| =2 |(1,cosalpha, sinalpha),(1,cosbeta, sinbeta),(1,cosgamma,singamma)|