Home
Class 12
MATHS
If the coordinates of a variable point b...

If the coordinates of a variable point be `(cos theta + sin theta, sin theta - cos theta)`, where `theta` is the parameter, then the locus of P is

Promotional Banner

Similar Questions

Explore conceptually related problems

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Find the distance between the points : (cos theta, sin theta), (sin theta, cos theta)

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If 2 cos theta + sin theta =1 then 7 cos theta + 6 sin theta is equal to

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

Solve : cos p theta = sin q theta.

Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

If (alpha, beta) is a point of intersection of the lines xcostheta +y sin theta= 3 and x sin theta-y cos theta= 4 where theta is parameter, then maximum value of 2^((alpha+beta)/(sqrt(2)) is