Home
Class 12
MATHS
One side of a square makes an angle alph...

One side of a square makes an angle `alpha` with x axis and one vertex of the square is at origin. Prove that the equations of its diagonals are `x(sin alpha+ cos alpha) =y (cosalpha-sinalpha)` or `x(cos alpha-sin alpha) + y (sin alpha + cos alpha) = a`, where a is the length of the side of the square.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I , find the value of alpha .

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

If A=[[cosalpha, -sin alpha] , [sin alpha, cos alpha]] then A+A'=I then alpha=

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If x sin alpha = y cos alpha, prove that : x/(sec 2alpha) + y/(cosec 2 alpha) = x

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.