Home
Class 12
MATHS
The lines 1)(p-q)x+(q-r)y+(r-p)=0,2)(q-r...

The lines 1)`(p-q)x+(q-r)y+(r-p)=0,2)(q-r)x+(r-p)y+(p-q)=0,3)(r-p)x+(p-q)y+(q-r)=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,2beta be the roots of the equation x^(2)-qx+r=0 , then the value of r is (1) (2)/(9)(p-q)(2q-p) (2) (2)/(9)(q-p)(2p-q) (3) (2)/(9)(q-2p)(2q-p) (4) (2)/(9)(2p-q)(2q-p)

The sums of first p, q, r terms of an A.P. are a, b, c respectively. Prove that (a)/(p) (q-r) +(b)/(q) (r-p) +(c )/(r) (p-q) =0

If p > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-q)/(1+p q))+tan^(-1)((q-r)/(1+q r))+tan^(-1)((r-p)/(1+r p)) .

Let A= {p, q, r} . Which of the following is an equivalence relation on A ? (a) R_1 = {(p, q), (q, r), (p, r), (p, q)} (b) R_2 = {(r,q), (r, p), (r.r), (q, r)} (c) R_3 = {(p, p), (q,q), (r, r), (p, q)} (d) one of these

The base B C of a A B C is bisected at the point (p ,q) & the equation to the side A B&A C are p x+q y=1 & q x+p y=1 . The equation of the median through A is: (p-2q)x+(q-2p)y+1=0 (p+q)(x+y)-2=0 (2p q-1)(p x+q y-1)=(p^2+q^2-1)(q x+p y-1) none of these

Without expanding the determinant prove that: |(0, p-q, p-r), (q-p,0, q-r),(r-p, r-q, 0)|=0

If p, q, r are any real numbers, then (A) max (p, q) lt max (p, q, r) (B) min(p,q) =1/2 (p+q-|p-q|) (C) max (p, q) < min(p, q, r) (D) None of these

Add: (i) p\ (p-q), q(q-r) and \ r\ (r-p) (ii) 2x\ (z-x-y)\ and \ 2y\ (z-y-x)

If a=x y^(p-1),\ b=x y^(q-1) and c=x y^(r-1) , prove that a^(q-r)b^(r-p)\ c^(p-q)=1