Home
Class 12
MATHS
Prove that all lines represented by the ...

Prove that all lines represented by the equation `(2 cos theta + 3 sin theta ) x + (3 cos theta - 5 sin theta ) y = 5 cos theta - 2 sin theta ` pass through a fixed point for all `theta ` What are the coordinates of this fixed point ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cos theta+sin theta )^2 + (cos theta - sin theta )^2 =2

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

If 5 cos theta = 6 , sin theta , evalutate : (12 sin theta - 3cos theta)/(12 sin theta + 3 cos theta)

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

If cos theta + sin theta =sqrt(2) cos theta prove that cos theta -sin theta =sqrt(2) sin theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .