Home
Class 12
MATHS
If p and q are respectively the perpendi...

If p and q are respectively the perpendiculars from the origin upon the striaght lines, whose equations are ` x sec theta + y cosec theta =a and x cos theta -y sin theta = a cos 2 theta , then 4p^(2) + q^(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If p\ and\ q be the perpendicular form the origin upon the straight lines x s e ctheta+ycosectheta=a\ and\ xcostheta-y sintheta=acos2theta Prove that : 4p^2+q^2=a^2\ dot

Eliminate theta from a sin theta + bcos theta = x "and" a cos theta -b sin theta = y

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

If tan theta = p/q then (p sin theta - q cos theta)/(p sin theta + q cos theta)=

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

Eliminate theta from the following equation : x cos theta - y sin theta = a, x sin theta + y cos theta = b

Solve : cos p theta = sin q theta.

Let x= cos theta and y = sin theta for any real value theta . Then x^(2)+y^(2)=