Home
Class 12
MATHS
Show that equations x=a cos theta + b si...

Show that equations `x=a cos theta + b sin theta, y = a sin theta - b cos theta` represents a circle, wheter `theta` is a parameter.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : x=a cos theta - b sin theta and y = a sin theta + b cos theta , represent a circle where theta is the parameter.

sin^(3)theta + sin theta - sin theta cos^(2)theta =

if theta is a parameter then x=a ( sin theta + cos theta), y=b( sin theta - cos theta ) respresents

Prove that : x cos theta + y sin theta = a and x sin theta - y cos theta = b are the parametric equations of a circle for all theta satisfying 0le thetalt2pi

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

If 3 sin theta+5 cos theta = 5 , show that: 5 sin theta - 3 cos theta = +-3

Show that the matrix [{:( cos theta , sin theta ),(-sin theta , cos theta ):}] is orthogonal

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

If a cos theta-b sin theta = c, then find the value of a sin theta + b cos theta.

If x/a cos theta + y/b sin theta = 1 , x/a sin theta - y/b cos theta = 1 then x^2/a^2 + y^2/b^2 =