Home
Class 12
MATHS
Show that the point (x,y) given by x=(2a...

Show that the point (x,y) given by x=`(2at)/(1+t^(2))` and `y=(a(1-t^(2)))/(1+t^(2))` lies on a circle

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the point (x ,y) given by x=(2a t)/(1+t^2)a n dy=((1-t^2)/(1+t^2)) lies on a circle for all real values of t such that -1lt=tlt=1, where a is any given real number.

Show that the point (x ,y) given by x=(2a t)/(1+t^2)a n dy=((1-t^2)/(1+t^2)) lies on a circle for all real values of t such that -1lt=tlt=1, where a is any given real number.

Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)

Find (dy)/(dx), when x=(3a t)/(1+t^2)" and "y =(3a t^2)/(1+t^2)

Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

A function y=f(x) is given by x=1/(1+t^2) and y=1/(t(1+t^2)) for all tgt0 then f is

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is