Home
Class 12
MATHS
Prove that : x cos theta + y sin theta =...

Prove that : `x cos theta + y sin theta = a and x sin theta - y cos theta = b` are the parametric equations of a circle for all `theta` satisfying `0le thetalt2pi`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

If x/a cos theta + y/b sin theta = 1 , x/a sin theta - y/b cos theta = 1 then x^2/a^2 + y^2/b^2 =

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

Prove that : (cos theta)/(1-tan theta) + (sin theta)/(1-cot theta) = sin theta + cos theta

Show that : x=a cos theta - b sin theta and y = a sin theta + b cos theta , represent a circle where theta is the parameter.

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

Prove that : ( sin theta- cos theta +1)/( sin theta +cos theta -1) = (1)/( sec theta - tan theta)