Home
Class 12
MATHS
Show that the point (x, y), where x=a+r ...

Show that the point `(x, y)`, where `x=a+r cos theta, y = b + r sin theta`, lies on a circle for all values of `theta`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the point (x, y) , where x=5 cos theta, y=-3+5 sin theta , lies on a circle for all values of theta

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

If A=sin^(8) theta + cos^(14) theta , then for all values of theta ,

The centre of the circle x=2+3 cos theta, y=3 sin theta-1 , is

Show that the line (x-2)costheta+(y-2)sintheta=1 touches a circle for all values of theta .Find the circle.

Differentiate w.r.t x Given x =a cos^(3) theta , y = b sin^(3) theta

If x=cos^2theta+sin^4theta then for all real values of theta

Let x= cos theta and y = sin theta for any real value theta . Then x^(2)+y^(2)=

Prove that : x cos theta + y sin theta = a and x sin theta - y cos theta = b are the parametric equations of a circle for all theta satisfying 0le thetalt2pi

Show that : x=a cos theta - b sin theta and y = a sin theta + b cos theta , represent a circle where theta is the parameter.