Home
Class 12
MATHS
Show that the orthocentre of DeltaABC ha...

Show that the orthocentre of `DeltaABC` having vertices `A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)` is : `(x_1 tan A + x_2 tan B + x_3 tan C)/(tan A + tan B + tan C) , (y_1 tan A + y_2 tan B + y_3 tan C)/(tan A + tan B + tan C))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

Given that A = B +C. prove that tan A - tan B - tan C = tan A tan B tan C.

Show that tan 3x tan 2x tan x = tan 3x - tan 2x - tan x .

If A, B, C are angles of Delta ABC and tan A tan C = 3, tan B tan C = 6 , then

If in DeltaABC, (tan A - tan B)/(tan A + tan B) = (c-b)/c , prove that : A = 60^0 .

If A + B + C = pi , prove that tan3A + tan3B + tan3C = tan3A*tan3B*tan3C

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

If y tan (A+B+C) =x tan (A+B-C) = gamma then tan 2C=

Solve tan x+tan 2x+tan 3x = tan x tan 2x tan 3x, x in [0, pi] .

Statement-1: In any DeltaABC if A is obtuse, then tanBtanC lt1 Statement-2: In any !ABC , we have tan A + tan B + tan C = tan A tan B tan C