Home
Class 12
MATHS
Consider three points P-=(-sin(beta-alph...

Consider three points `P-=(-sin(beta-alpha),-cosbeta), Q-=(cos(beta-alpha),sin beta)` and `R-=(cos(beta-alpha+theta),sin(beta-theta))`, where `0lt alpha,beta,thetaltpi//4`. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider three points P = (-sin (beta-alpha), -cos beta) , Q = (cos(beta-alpha), sin beta) , and R = ((cos (beta - alpha + theta), sin (beta - theta)) , where 0< alpha, beta, theta < pi/4 Then

Consider three points P = (-sin (beta-alpha), -cos beta) , Q = (cos(beta-alpha), sin beta) , and R = ((cos (beta - alpha + theta), sin (beta - theta)) , where 0< alpha, beta, theta < pi/4 Then

Consider three points P = (-sin (beta-alpha), -cos beta) , Q = (cos(beta-alpha), sin beta) , and R = ((cos (beta - alpha + theta), sin (beta - theta)) , where 0< alpha, beta, theta < pi/4 Then

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If cos alpha+cos beta=a*sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.